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With precision medicine as the goal, the human biobank of each country should be
analyzed to determine the complete research results related to genetic diseases. In
addition, with the increase in medical imaging data, automatic image processing with
image recognition has been widely studied and applied in biomedicine. However,
case–control data imbalance often occurs in human biobanks, which is usually solved
by the statistical method SAIGE. Due to the huge amount of genetic data in human
biobanks, the direct use of the SAIGE method often faces the problem of insufficient
computer memory to support calculations and excessive calculation time. The other
method is to use sampling to adjust the data to balance the case–control ratio, which is
called Synthetic Minority Oversampling Technique (SMOTE). Our study employed the
Manhattan plot and genetic disease information from the Taiwan Biobank to adjust the
imbalance in the case–control ratio by SMOTE, called “TW-SMOTE.” We further used a
deep learning image recognition system to identify the TW-SMOTE. We found that TW-
SMOTE can achieve the same results as that of SAIGE and the UK Biobank (UKB). The
processing of the technical data can be equivalent to the use of data plots with a relatively
large UKB sample size and achieve the same effect as that of SAIGE in addressing data
imbalance.
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1 INTRODUCTION

As national and ethnic human databases have been established and improved in recent years,
genome-wide association studies (GWAS) have become a widely used method in genetic disease
research to analyze the genetics of complex diseases. In the association analysis, theManhattan plot is
a visual representation of the p-value position of a single nucleotide polymorphism (SNP) association
(Jain et al., 1999).

As the technology of precision medicine continues to evolve, more andmore researchers are using
human biobanks, but researchers usually look for large and easily accessible human biobanks for
their research. However, depending on the ethnicity or even country, genetic diseases may be
attributed to different genetic and environmental factors. Therefore, with the goal of precision
medicine, the human biobanks in each country should be analyzed to determine complete genetic
disease–related research results.

Case–control data imbalance often occurs in human biobanks, which is usually addressed by the
statistical method SAIGE (Zhou et al., 2018), as it uses generalized mixedmodel association testing to
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correct data imbalance in association analysis. Due to the huge
amount of genetic data in the human biobanks, the direct use of
the SAIGE method often faces the problem of insufficient
computer memory to support the computation, and the
computation time is too long. In the case of extreme
case–control imbalance in the database, another common
method is to use sampling to adjust the data to balance the
case–control ratio, which is called the Synthetic Minority
Oversampling Technique (SMOTE). It has been shown that
the SMOTE method can improve the classification accuracy of
a few categories (Chawla et al., 2002).

In addition, with the increase of medical imaging data,
automatic image processing with image recognition has been
widely studied and applied in biomedicine (Smistad et al., 2015).
Preprocessing of medical images includes histogram equalization,
smoothing, erosion, and dilation. These techniques have been
combined to develop a medical image processing library, which is
widely used to identify diseases and determine whether or not the
organs are normal (Widodo et al., 2020). The results of the GWAS
analysis are presented through a Manhattan plot, where the SNP-
associated p-value was used as an image feature to match the
similarity with other Manhattan images using a deep learning
training model. This analysis method improves the performance
and speed of computing when matching a large database.

This study employed the Manhattan plot and genetic disease
information from the Taiwan Biobank (TWB) to correct the
information imbalance after the same information was treated by
SMOTE, and this statistical analysis result was the same as that of
SAIGE. Furthermore, we used a deep learning image recognition
system to identify the TWB with relatively few subjects, in order
to generate data with SMOTE, which can achieve the same results
as the UK Biobank (UKB), which has more subjects, to explain
genetic diseases.

2 MATERIALS AND METHODS

2.1 Study Population
The participants and their data were obtained exclusively from
the TWB (https://www.twbiobank.org.tw/test_en) (Wei et al.,
2021). Up to April 15th 2021, more than 144,000 participants
had been recruited. The demographic and health-related survey
data for the 105,388 study subjects were released in
December 2019.

2.2 Gentyping, Quality Control, and GWAS
Detailed genotyping and imputation procedures have been
described by Wei et al. (2021). The 27,604 subjects and
632,172 SNPs were genotyped with the customized TWB1
array in this study. We first homogenized the controls by
removing comorbid individuals from the control group of
each trait. Comorbid diseases are defined by a data-driven
method using the partitioning around medoids (PAM) (Van
der Laan and Pollard, 2003; Zhang and Couloigner, 2005;
Schubert and Rousseeuw, 2019) algorithm in the cluster
package of R (version 3.6) and φ-correlation as our distance

matrices. The best-fit group numbers were selected by
maximizing the silhouette score (Rousseeuw, 1987).

Subjects and SNPs were extracted by the following criteria: 1)
call rate > 0.95; 2) MAF > 0.01; and 3) deviation from
Hardy–Weinberg equilibrium, p > 0.001. The QC and GWAS
analyses were performed using PLINK2 (https://www.cog-
genomics.org/plink/2.0).

2.3 Data Imbalance Processing, SMOTE
The basic principle of SMOTE is to select a sample from a small
number of samples as the basis for generating a new sample, and
then, randomly select a sample as its auxiliary sample from the k
neighboring samples of the same category according to sample
multiplicity n, and repeat the above n times. Then, n final samples
are generated for the samples and the auxiliary samples.

xnew,attr � xi,attr + (xij,attr − xi,attr) × γ

wherein Xi ∈ Rd, xi,attr represents the attr-th attribute of the i-th
sample of the minority class, attr = 1, 2, 3, d; γ denotes a random
variable between [0,1] and the j-th neighboring sample of the xij

sample xi, j = 1, 2, 3, . . ., k; xnew is the final new sample generated
by the difference between xij and xi (Chawla et al., 2002).

In order to determine which parameter value would make the
TW-SMOTE–adjusted Manhattan plot the most compatible with
the TW-SAIGE–adjusted Manhattan plot in Taiwan, this study
compared the most appropriate ratio of the generated data for
disease according to the scales of 0.1, 0.03, 0.005, and 0.001.

2.4 Image Recognition
This study divided image recognition into three items: 1) TW-
SMOTE: TWB used SMOTE to deal with data imbalance; 2) TW-
SAIGE: TWB used SAIGE to deal with data imbalance; and 3)
UK-SAIGE: UKB used SAIGE to deal with data imbalance.

2.4.1 Image-Based Smoothing and
Morphological Manipulation
This study used the open source Computer Vision library
(OpenCV) in Python to extract features by removing outliers
and noise (Bradski and Kaehler, 2000) while preserving the
Manhattan graph information. OpenCV uses the
morphological operations of Dilation and Erosion to identify
the very large and very small areas in an image. Dilation is similar
to “field expansion,”which expands the highlighted areas or white
parts of an image, and the resulting image is larger than the
highlighted areas of the original image; Erosion is similar to “field
erosion,” which shrinks the highlighted areas or white parts of the
image, meaning the highlighted or white part of the image is
reduced and refined, and the resulting image is smaller than the
highlighted area of the original image. Finally, this study used the
gradient operation, where the gradient operation is equal to
dilation–erosion (Mordvintsev and Abid, 2014).

2.4.2 Building an Image Classification Model
This study used a Convolutional Neural Network (CNN) to
construct a deep learning model using TensorFlow and Keras
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(Albawi et al., 2017). The CNN in this study has three
convolutional layers (including ReLu and Max Pooling2D),
where each convolutional layer is convolved with 3 × 3 filters,
and the three layers extract 32, 32, and 64 filters, respectively. The
final output is obtained by adding the softmax function to the last
node, and the value ranges from 0.0 to 1.0 (O’Shea and Nash,
2015).

In order to limit the training set, this study boosted the data by
a series of transformations, meaning the model would not see two
identical pictures, which helped to suppress model overfitting and
enhanced the model’s predictive capacity. This study
implemented Keras, which uses
keras.preprocessing.image.ImageDataGenerator, epochs = 20,
and batch_size = 32. The analysis flow of this study is shown
in Figure 1. The models were trained according to the above
parameters, and model prediction was performed on the testing
set (Chollet, 2016). For each trait, there were 515,200 Manhattan
plots for building an image classification model in our study.
Among them, we used 85% of the Manhattan plots for training
and 15% for validation. As three disease categories [hypertension
(HPT), asthma (AST), irritable bowel syndrome (IBS)] were used
in this study, three similarity values were assigned to one
Manhattan plot for each prediction, which were summed to 1.
The similarities between the Manhattan plot and the

corresponding three diseases are represented by the model
classification, where the highest of the three similarity values
was used as the basis for model classification. In this study, the
loss which is equal to the distance between the real and predicted,
and accuracy which is equal to the number of correct
classifications/the total number of classifications were used as
the indicators of model performance in the training set, and
similarity was used as the indicator of model performance
evaluation in the testing set (Lee and Song, 2019).

3 RESULTS

This study divided the data analysis into four parts. The first part
conducted data cleaning before data analysis, which included
disease clustering to remove comorbidities and data quality
control using PLINK2. The second part performed TW-SAIGE
and TW-SMOTE imbalance data processing. The third part built
a deep learning image recognition model using the TW-SMOTE
and TW-SAIGE Manhattan data sets and adjusted the TW-
SMOTE–related parameters according to their image
recognition model training results in order to fulfill the
objectives of this study. The fourth part performed sequential
image recognition on UK-SAIGE.

FIGURE 1 | Analysis flow of this study.
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FIGURE 2 | Parameters for modifying the SMOTE adjustment ratios were determined using amixture setting with TW-SMOTEAST-MIX, TW-SMOTEHPT-MIX, and TW-
SMOTEIBS-MIX (AST = 0.001, HPT = 0.005, and IBS = 0.03) in “original” labeled, Gaussian filter (G) + dilation (D), Gaussian filter (G) +morphological gradient operation (G),
median filter (M) + dilation (D), and median filter (M) + morphological gradient operation (G).
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3.1 Partitioning Around Medoid
Before drawing a Manhattan plot and performing image
recognition, the data must be preprocessed to complete data
cleaning and correction in several steps according to the nature of
the data. As one of the steps is to remove the comorbidities of the
target diseases to avoid bias in analysis, this study clustered
diseases to identify the possible comorbidities. Before using the
PAM, only 23 diseases with high prevalence in TWB were
included in the clustering. The PAM was set to k = 8; the
comorbidities were divided into eight groups, and the cosine

similarity distance was used to calculate the clustering. The results
are shown in Supplementary Figure S1.

3.2 Data Imbalance Processing
Among the 23 diseases, three were selected from the different
subgroups of the PAM: AST, HPT, and IBS. Based on the above
PAM subgroups (Supplementary Figure S1), we removed
subjects with the same subgroup of diseases for each of the
three diseases, and 2,542 subjects with AST, 3,252 subjects
with HPT, and 7,058 subjects with IBS were excluded.

FIGURE 3 | Unprocessed Manhattan plots of UK-SAIGEAST, UK-SAIGEHPT, and UK-SAIGEIBS (“original” labeled) were adjusted by image processing for dilation
[(D) labeled] and morphological gradient calculation [(G) labeled].
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Since age and gender are common variables affecting disease
occurrence, stratification by age and gender can improve the
appropriateness of data generation. This study divided the data
into eight groups according to gender and age percentile (25%,
47 years; 50%, 55 years; and 75%, 60 years). AfterQC, theManhattan
plot results of the association analysis are presented in Figure 2,
Figure 3, and Figure 4 in “original” labeled.

3.3 Image Recognition
3.3.1 UK-SAIGE
The unprocessed Manhattan plot of UK-SAIGE (Figure 3
in “original” labeled) was adjusted by image
processing for dilation [Figure 3 in “(D)” labeled] and
morphological gradient calculation [Figure 3 in “(G)”
labeled].

FIGURE 4 | Unprocessed Manhattan plots of TW-SAIGEAST, TW-SAIGEHPT, and TW-SAIGEIBS (“original” labeled) were adjusted by image processing for dilation
[(D) labeled] and morphological gradient calculation [(G) labeled].
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3.3.2 TW-SAIGE
After QC by the PAM, excluding comorbidities and SNP, the
Manhattan plot results of SAIGE are presented in Figure 4 in
“original” labeled. After image processing, the Manhattan plot
was adjusted by dilation [Figure 4 in “(D)” labeled] and
morphological gradient calculation [Figure 4 in “(G)” labeled].

3.3.3 TW-SMOTE
There are four combinations of image processing according to the
filters (Gaussian filter, median filter) and morphology (dilation,
morphological gradient operation): Gaussian filter (G) + dilation
(D), Gaussian filter (G) + morphological gradient operation (G),
median filter (M) + dilation (D), and median filter (M) +
morphological gradient operation (G).

3.3.3.1 Adjusting the Ratio to 0.005
In the Gaussian filter (G) + dilation (D), the Gaussian filter could
partially remove the outliers and noise, and it was found that the
Manhattan plot of TW-SMOTEHPT-GD-0.005 [Supplementary
Figure S2 in “(G)+(D)” labeled] was already similar to that of
TW-SAIGEHPT-D [Figure 4 in “(D)” labeled]. However, the TW-
SMOTEIBS-GD-0.005 [Supplementary Figure S2 in “(G)+(D)”
labeled] and TW-SAIGEIBS-D [Figure 4 in “(D)” labeled]
signals (Manhattan Y-value) were low, while the TW-
SMOTEAST-GD-0.005 [Supplementary Figure S2 in “(G)+(D)”
labeled] and TW-SAIGEAST-D [Figure 4 in “(D)” labeled]
signals (Manhattan y-axis) were high. In the training set, the
best performance was obtained with validation_steps = 800 and
steps_per_epoch = 3 (loss = 0.0061, accuracy = 1, Supplementary
Table S1). In the testing set, when validation_steps = 400 and 800,
the best prediction result was obtained (4/15 correct predictions).
Among them, AST performed the best at validation_steps = 400,
and TW-SMOTEAST-GD-0.005 was correctly predicted three out of
five times [similarity = 0.3406 (steps_per_epoch = 5) to 0.7259
(steps_per_epoch = 2)]. HPT performed the best at
validation_steps = 800, and TW-SMOTEHPT-GD-0.005 was
correctly predicted four out of five times [similarity = 0.3388
(steps_per_epoch = 4) to 0.8618 (steps_per_epoch = 3)].

In the Gaussian filter (G) + morphological gradient operation
(G), the Gaussian filter could remove the outliers and noise part
[Supplementary Figure S2 in “(G)+(G)” labeled]. In the training set,
when validation_steps = 400 and steps_per_epoch = 3, the model
showed the best performance (loss = 0.0036, accuracy = 1,
Supplementary Table S1). In the testing set, the best prediction
result was obtained at validation_steps = 4, 400, and 800 (5/15
correct predictions). Among them, AST performed best at
validation_steps = 4, 400, and 800, and TW-SMOTEAST-GG-0.005
was correctly predicted once out of the five times [similarity = 0.3478
(validation_steps = 400, steps_per_epoch = 4) to 0.4679
(validation_steps = 4, steps_per_epoch = 4)]. While HPT
performed well in all settings of validation_steps, TW-
SMOTEHPT-GG-0.005 was correctly predicted four out of five times
[similarity = 0.5981 (validation_steps = 800, steps_per_epoch = 1) to
0.9999 (validation_steps = 400, steps_per_epoch = 3)].

In the median filter (M) + dilation (D), after filtering out the
noise floating above the Manhattan plot, TW-SMOTEIBS-MD-0.005

and TW-SMOTEAST-MD-0.005 [Supplementary Figure S2 in

“(M)+(D)” labeled] were slightly different to those of TW-
SAIGEIBS-D and TW- SAIGEAST-D [Figure 4 in “(D)” labeled].
However, TW-SMOTEHPT-MD-0.005 was still unable to solve the
problem of too much noise using median filtering. In the training
set, the best performance was obtained at validation_steps = 40
and steps_per_epoch = 3 (loss = 0.0055, accuracy = 1,
Supplementary Table S1). In the testing set, the best
prediction result was obtained at validation_steps = 40 (5/15
correct predictions). AST performed the best with
validation_steps = 4 and 40, and TW-SMOTEAST-MD-0.005 was
correctly predicted twice out of the five times [similarity = 0.5552
(validation_steps = 4, steps_per_epoch = 3) to 0.9319
(validation_steps = 4, steps_per_epoch = 2)]. HPT performed
the best at validation_steps = 40, and TW-SMOTEHPT-MD-0.005

was correctly predicted in three out of five predictions [similarity
= 0.3533 (steps_per_epoch = 4) to 0.63334 (steps_per_epoch =
1)]. For IBS with validation_steps = 800, TW-SMOTEIBS-MD-0.005

had successful recognition similar to TW-SAIGEIBS [similarity =
0.3544 (validation_steps = 800, steps_per_epoch = 5)].

In the median filter (M) + morphological gradient operation
(G), the image features were divided into the upper and lower
sawtooth patterns [Supplementary Figure S2 in “(M)+(G)”
labeled]. In the training set, the best performance was
obtained with validation_steps = 400 and steps_per_epoch = 3
(loss = 0.0011, accuracy = 1, Supplementary Table S1). In the
testing set, the best prediction result was obtained at
validation_steps = 40 (5/15 correct predictions). AST
performed the best at validation_steps = 40, and TW-
SMOTEAST-MG-0.005 was correctly predicted once out of the
five times [similarity = 0.3476 (steps_per_epoch = 4)]. HPT
performed the best at validation_steps = 4, 40, and 400, and
TW-SMOTEHPT-MG-0.005 was correctly predicted four out of five
times [similarity = 0.3564 (validation_steps = 400,
steps_per_epoch = 5) to 0.9999 (validation_steps = 4,
steps_per_epoch = 3)]. When validation_steps = 800, TW-
SMOTEIBS-MG-0.005 had a successful recognition similar to
TW-SAIGEIBS-G [similarity = 0.4319 (validation_steps = 800,
steps_per_epoch = 4), Supplementary Figure S2 in “(M)+(G)”
labeled, Figure 4 in “(G)” labeled].

The difference between the Manhattan plots of TW-
SMOTEIBS and TW-SMOTEAST was large when the SMOTE-
generated data was adjusted to 0.005. However, the TW-
SMOTEIBS (Supplementary Figure S2) and TW-SAIGEIBS
(Figure 4) signals (Manhattan y-axis) were low, while the
TW-SMOTEAST (Supplementary Figure S2) and TW-
SAIGEAST (Figure 4) signals (Manhattan y-axis) were high.

3.3.3.2 Adjusting the Ratio to 0.03
In the Gaussian filter (G) + dilation (D), there was still a lot of
noise above the Manhattan plot [Supplementary Figure S3 in
“(G)+(D)” labeled]. In the training set, when validation_steps =
400 and steps_per_epoch = 3, the model showed the best
performance (loss = 0.1906, accuracy = 1, Supplementary
Table S2). In the testing set, the best prediction result was
obtained at validation_steps = 800 (6/15 correct predictions).
Among them, AST performed the best at validation_steps = 40
and 800, and TW-SMOTEAST-GD-0.03 was correctly predicted
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twice out of the five times [similarity = 0.4170 (validation_steps =
800, steps_per_epoch = 1) to 0.7340 (validation_steps = 40,
steps_per_epoch = 2)]. HPT performed the best at
validation_steps = 4 and 400 and was correctly predicted three
out of five times for TW-SMOTEHPT-GD-0.03 [similarity = 0.3822
(validation_steps = 4, steps_per_epoch = 4) to 0.8125
(validation_steps = 400, steps_per_epoch = 3)]. IBS performed
the best at validation_steps = 800, and TW-SMOTEIBS-GD-0.03
was correctly predicted twice out of the five times [similarity =
0.3509 (steps_per_epoch = 5) to 0.4404 (steps_per_epoch = 4)].

In the Gaussian filter (G) + morphological gradient operation
(G), the Gaussian filter still retained more noise [Supplementary
Figure S3 in “(G)+(G)” labeled]. In the training set, at
validation_steps = 4, steps_per_epoch = 2, the model showed
the best performance (loss = 0.1403, accuracy = 0.9666,
Supplementary Table S2). In the testing set, the best
prediction results were obtained at validation_steps = 4, 400,
and 800 (5/15 correct predictions). Among them, AST performed
the best at validation_steps = 40 and 400, TW-SMOTEAST-GG-0.03
four out of five predictions were correct [similarity = 0.3503
(validation_steps = 400, steps_per_epoch = 4) to 0.6586
(validation_steps = 400, steps_per_epoch = 3)]. HPT
performed the best at validation_steps = 4 and 800 and was
correctly predicted twice by TW-SMOTEHPT-GG-0.03 out of the
five predictions [similarity = 0.3462 (validation_steps = 4,
steps_per_epoch = 4) to 0.8761 (validation_steps = 4,
steps_per_epoch = 3)]. IBS performed the best with
validation_steps = 4, and TW-SMOTEIBS-GG-0.03 was predicted
correctly once out of the five times (similarity = 0.3450,
steps_per_epoch = 5).

In the median filter (M) + dilation (D), it was found that the
noise floating above the Manhattan plot could be filtered out
[Supplementary Figure S3 in “(M)+(D)” labeled]. In the training
set, with validation_steps = 400 and steps_per_epoch = 3, the
model showed the best performance (loss = 0.0214, accuracy = 1,
Supplementary Table S2). In the testing set, validation_steps
performed fairly well in each setting (all 5/15 correct predictions).
Among them, AST performed the best at validation_steps = 40,
400, and 800, and TW-SMOTEAST-MD-0.03 was correctly
predicted three out of five times [similarity = 0.3524
(validation_steps = 400, steps_per_epoch = 4) to 0.7946
(validation_steps = 400, steps_per_epoch = 3)]. HPT
performed the best at validation_steps = 4, 40, and 400 and
was correctly predicted twice by TW-SMOTEHPT-MD-0.03 out of
the five predictions [similarity = 0.3782 (validation_steps = 400,
steps_per_epoch = 1) to 0.9502 (validation_steps = 400,
steps_per_epoch = 1)]. IBS performed the best with
validation_steps = 4 and 800, and TW-SMOTEIBS-MD-0.03 was
predicted correctly once out of the five predictions [similarity =
0.3413 (validation_steps = 4, steps_per_epoch = 5) to 0.3528
(validation_steps = 800, steps_per_epoch = 4)].

In the median filter (M) + morphological gradient operation
(G), the image features were divided into upper and lower
sawtooth patterns [Supplementary Figure S3 in “(M)+(G)”
labeled], and its performance was not as good as that of the
dilation operation image processing. In the training set, the best
performance was obtained at validation_steps = 40 and

steps_per_epoch = 3 (loss = 0.1821, accuracy = 0.9622,
Supplementary Table S2). In the testing set, the best
prediction result was obtained at validation_steps = 800 (6/15
correct predictions). Among them, AST performed the best at
validation_steps = 4 and 400, and TW-SMOTEAST-MG-0.03 was
correctly predicted twice out of the five times [similarity = 0.3406
(validation_steps = 400, steps_per_epoch = 5) to 0.6919
(validation_steps = 400, steps_per_epoch = 3)]. HPT
performed the best at validation_steps = 800, and TW-
SMOTEHPT-MG-0.03 was predicted correctly in each of the five
predictions [similarity = 0.3847 (steps_per_epoch = 4) to 0.8618
(steps_per_epoch = 2)]. IBS performed the best at
validation_steps = 40, and TW-SMOTEIBS-MG-0.03 was
predicted correctly once out of the five predictions (similarity
= 0.3508, steps_per_epoch = 5).

TW-SMOTEIBS and TW-SMOTEAST were already similar to
the Manhattan plot of TW-SAIGE when the data was scaled to
0.03. After image processing, we can see that the median filtered
image had less signal than the Gaussian filtered image; however,
with the TW-SMOTEHPT generated data scaled to 0.03, the
message point (y-axis of the Manhattan plot) was much lower.
However, the similarity between the Manhattan plots of TW-
SMOTEHPT and TW-SAIGEHPT was still a bit different. In
addition, as the median filter (M) retained fewer features than
the Gaussian filter (G), it generated a worse classification effect
than other image processing combinations.

3.3.3.3 Adjusting the Ratio to 0.1
In the Gaussian filter (G) + dilation (D), as the eigenstyles of AST
and HPT were both high, we may only judge them according to
the jagged height above the Manhattan plot [Supplementary
Figure S4 in “(G)+(D)” labeled]. In the training set, the model
performed best when validation_steps = 4 and steps_per_epoch =
3 (loss = 0.3079, accuracy = 0.8591, Supplementary Table S3). In
the testing set, the best prediction result was obtained at
validation_steps = 4 and 800 (5/15 correct predictions).
Among them, AST performed the best at validation_steps =
40 and 400, and TW-SMOTEAST-GD-0.1 was correctly predicted
three out of five times [similarity = 0.3448 (validation_steps =
400, steps_per_epoch = 4) to 0.7300 (validation_steps = 40,
steps_per_epoch = 3)]. HPT performed the best at
validation_steps = 4 and was correctly predicted three out of
five times for TW-SMOTEHPT-GD-0.1 [similarity = 0.3583
(steps_per_epoch = 5) to 0.7300 (steps_per_epoch = 3)]. IBS
performed the best at validation_steps = 800, and TW-
SMOTEIBS-GD-0.1 was correctly predicted twice out of the five
times [similarity = 0.3372 (steps_per_epoch = 5) to 0.3573
(steps_per_epoch = 4)].

In the Gaussian filter (G) + morphological gradient operation
(G), the features were divided into upper and lower sawtooth
patterns [Supplementary Figure S4 in “(G)+(G)” labeled]. The
model performed the best in the training set with validation_steps
= 800 and steps_per_epoch = 3 (loss = 0.0521, accuracy = 1,
Supplementary Table S3). In the testing set, the best prediction
result was obtained at validation_steps = 400 (6/15 correct
predictions). Among them, AST performed the best at
validation_steps = 4 and 40, and TW-SMOTEAST-GG-0.1 was
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correctly predicted three out of five times [similarity = 0.3442
(validation_steps = 4, steps_per_epoch = 4)] to 0.8502
(validation_steps = 40, steps_per_epoch = 2)]. HPT performed
the best at validation_steps = 400 and was correctly predicted
three out of five times by TW-SMOTEHPT-GG-0.1 [similarity =
0.3618 (steps_per_epoch = 1) to 0.8850 (steps_per_epoch = 3)].
IBS performed the best at validation_steps = 40, 400, and 800,
with TW-SMOTEIBS-GG-0.1 being correct in one out of the five
predictions [similarity = 0.3474 (validation_steps = 800,
steps_per_epoch = 4) to 0.3626 (validation_steps = 400,
steps_per_epoch = 5)].

In the median filter (M) + dilation (D), as the eigenstyles were
all high, they could only be judged according to the jagged height
above the Manhattan plot [Supplementary Figure S4 in
“(M)+(D)” labeled]. In the training set, the best performance
was obtained when validation_steps = 40 and steps_per_epoch =
3 (loss = 0.0516, accuracy = 0.9677, Supplementary Table S3). In
the testing set, the best performance was obtained at
validation_steps = 400 (6/15 correct predictions). Among
them, AST performed the best at validation_steps = 400, and
TW-SMOTEAST-MD-0.1 was correctly predicted four out of five
times [similarity = 0.3786 (steps_per_epoch = 5) to 0.6191
(steps_per_epoch = 3)]. HPT performed the best at
validation_steps = 40 and 800 and was correctly predicted
twice by TW-SMOTEHPT-MD-0.1 in five predictions [similarity
= 0.3753 (validation_steps = 40, steps_per_epoch = 4) to 0.7045
(validation_steps = 800, steps_per_epoch = 2)]. IBS performed
the best at validation_steps = 4, and TW-SMOTEIBS-MD-0.1 was
predicted correctly one out of five times [similarity = 0.3464
(steps_per_epoch = 4) to 0.3469 (steps_per_epoch = 5)].

In the median filter (M) + morphological gradient operation
(G), the features were divided into upper and lower sawtooth
patterns, but fewer features were retained, as compared to other
graphical processing methods [Supplementary Figure S4 in
“(M)+(G)” labeled]. The model performed the best in the
training set with validation_steps = 40 and steps_per_epoch =
2 (loss = 0.2135, accuracy = 0.9375, Supplementary Table S3). In
the testing set, validation_steps = 40 showed the best prediction
result (6/15 correct prediction). Among them, AST performed the
best at validation_steps = 40, and TW-SMOTEAST-MG-0.1 was
correctly predicted twice out of the five times [similarity = 0.3620
(steps_per_epoch = 5) to 0.4064 (steps_per_epoch = 1)]. HPT
performed the best at validation_steps = 40, and TW-
SMOTEHPT-MG-0.1 was correctly predicted twice out of the five
times [similarity = 0.3459 (steps_per_epoch = 4) to 0.7886
(steps_per_epoch = 3)]. IBS performed the best at
validation_steps = 4 and 400, and TW-SMOTEIBS-MG-0.1 was
correctly predicted in one out of five predictions [similarity =
0.3536 (validation_steps = 4, steps_per_epoch = 4) to 0.3617
(validation_steps = 400, steps_per_epoch = 5)].

When the HPT ratio was adjusted to 0.1, the TW-SMOTEHPT

statistically significant signal was spread over almost the entire
Manhattan plot, especially the Gaussian filter (G) + dilation (D)
[Supplementary Figure S4 in “(G)+(D)” labeled], as Gaussian
filtering preserves relatively more image features. However, the
drawback is that dilation (D) increases the signal of these noise
points (outliers) (Supplementary Figure S4). As the difference

between Manhattan plot characteristics of TW-SMOTEHPT and
the TW-SAIGEHPT increased, it increased the error rate of image
recognition.

3.3.3.4 Mixing Ratio
According to the findings in Sections 3.4.3.1 to 3.4.3.3, the
parameters for modifying the SMOTE adjustment ratios were
determined using a mixture setting with AST = 0.001, HPT =
0.005, and IBS = 0.03. As can be seen in Figure 2, TW-
SMOTEAST-MIX, TW-SMOTEHPT-MIX, and TW-SMOTEIBS-MIX

were found to have similar characteristics, as compared to the
TW-SAIGE Manhattan plot.

The model had the best performance in the training set of
Gaussian filter (G) + dilation (D) with validation_steps = 4 and
steps_per_epoch = 3 [loss = 0.0046, accuracy = 1, Supplementary
Table S4, Figure 2 in “(G)+(D)” labeled]. In the testing set,
validation_steps = 800 had the best prediction result (12/15
correct predictions). Among the three diseases, TW-
SMOTEHPT-GD-MIX showed the best performance (17/20
correct predictions) with similarity = 0.3560 (validation_steps
= 800, steps_per_epoch = 4) to 0.9997 (validation_steps = 800,
steps_per_epoch = 3). TW-SMOTEIBS-GD-MIX performed second
best (15/20 correct predictions), with similarity = 0.3440
(validation_steps = 4, steps_per_epoch = 4) to 0.9999
(validation_steps = 40, steps_per_epoch = 3 and 4). TW-
SMOTEAST-GD-MIX performed poorly (11/20 correct
predictions), similarity = 0.3812 (validation_steps = 400,
steps_per_epoch = 5) to 0.9988 (validation_steps = 400,
steps_per_epoch = 3).

The model had the best performance in the training set of
Gaussian filter (G) + morphological gradient operation (G)
with validation_steps = 800 and steps_per_epoch = 3 [loss =
0.0066, accuracy = 1, Supplementary Table S4, Figure 2 in
“(G)+(G)” labeled]. In the testing set, validation_steps = 400
had the best prediction (12/15 correct predictions). Among the
three diseases, TW-SMOTEHPT-GG-MIX had the best
performance (17/20 correct predictions) with similarity =
0.3614 (validation_steps = 400, steps_per_epoch = 4) to
0.9999 (validation_steps = 800, steps_per_epoch = 3). TW-
SMOTEIBS-GG-MIX was the second (14/20 correct predictions),
similarity = 0.3031 (validation_steps = 800, steps_per_epoch =
4) to 0.9991 (validation_steps = 800, steps_per_epoch = 3).
TW-SMOTEAST-GG-MIX performed the worst (10/20 correct
predictions), similarity = 0.3522 (validation_steps = 4,
steps_per_epoch = 4) to 0.9469 (validation_steps = 40,
steps_per_epoch = 3).

The model had the best performance in the training set of
median filter (M) + dilation (D) with validation_steps = 400 and
steps_per_epoch = 3 [loss = 0.0016, accuracy = 1, Supplementary
Table S4, Figure 2 in “(M)+(D)” labeled]. In the testing set,
validation_steps = 4 and 400 showed the best prediction results
(10/15 correct predictions). Among the three diseases, TW-
SMOTEHPT-MD-MIX and TW-SMOTEIBS-MD-MIX had the best
performances (14/20 correct predictions). TW-SMOTEAST-MD-

MIX performed the worst (10/20 correct predictions),
with similarity = 0.3670 (validation_steps = 40, steps_per_epoch
= 5) to 0.9871 (validation_steps = 4, steps_per_epoch = 2).
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The model had the best performance in the training set of
median filter (M) + morphological gradient operation (G) with
validation_steps = 40 and steps_per_epoch = 3 [loss = 0.0131,
accuracy = 0.9944, Supplementary Table S4, Figure 2 in
“(M)+(G)” labeled]. In the testing set, validation_steps = 400
had the best prediction result (12/15 correct predictions). The
performance of TW-SMOTEHPT-MG-MIX, TW-SMOTEIBS-MG-

MIX, and TW-SMOTEAST-MG-MIX were comparable (both 13/20
correct predictions). TW-SMOTEHPT-MG-MIX performed the best
at validation_steps = 800, and each of the five predictions were
predicted correctly [similarity = 0.3746 (steps_per_epoch = 4) to
0.9999 (steps_per_epoch = 3)]. TW-SMOTEIBS-MG-MIX also
performed the best at validation_steps = 800, with four out of
five predictions being correct [similarity = 0.3151
(steps_per_epoch = 4) to 0.9999 (steps_per_epoch = 3)]. TW-
SMOTEAST-MG-MIX also performed the best at validation_steps =
4, with four out of five predictions being correct [similarity =
0.3474 (steps_per_epoch = 4) to 0.9906 (steps_per_epoch = 3)].

Table S4 and Figure 2 show that median filtering can help
remove noise and preserve the features of the Manhattan plot in
most cases. In addition, if the Manhattan features are enhanced
through the dilation operation, in most cases, the classification
basis of the recognition system of the training model would not be
confused. In addition, the training model generally performed the
best (the lowest loss and highest accuracy) when the parameter
steps_per_epoch = 2 or 3 was set. The training model generally
performed better when validation_steps = 4 (the lowest loss and
highest accuracy), which can reduce the computing time of the
training model and generate good image recognition results.

3.4 UK-SAIGE Image Recognition
This study adopted the trained image recognition model
combination: TW-SMOTE with mixed ratio of median filter
(M) + dilation (D) [Figure 2 in “(M)+(D)” labeled], the
model parameters of steps_per_epoch = 2 and validation_steps
= 4 to train the model, and UK-SAIGE Manhattan plot + dilation
(D) [Figure 3 in “(D)” labeled] to predict the model. According to
the graph of correctness and the loss rate of the model, the
correctness rate increased and the error rate decreased as the
number of training iterations was increased. After 20 training
iterations, the model reached a correct rate of more than 90%.
TW-SMOTEMD-MIX was compared with UK-SAIGE Manhattan
plot + morphological gradient operation (G) [(Figure 3 in “(G)”
labeled] for image recognition, with TW-SMOTEHPT-MD-MIX

(similarity = 0.9719, Supplementary Table S5) and TW-
SMOTEIBS-MD-MIX (similarity = 0.6197, Supplementary
Table S5).

4 DISCUSSION AND CONCLUSION

The GWAS results of TWB are illustrated via a Manhattan plot,
where the p-value of the SNP loci is a feature of the plot, which
was applied to train the model using the deep learning method. In
order to handle the imbalanced data of TWB, the GWAS results
of TWB are illustrated with a Manhattan plot after data
generation using SMOTE, and then, the similarity was

matched with the Manhattan plot of TWB using the SAIGE
statistical method for data imbalance processing and the UKB
Manhattan plot.

Image processing and image recognition have been extensively
studied and applied in biomedicine, such as skeleton using a de-
noising filter and image smoothing for retinal images. In addition,
the same techniques have been used to develop medical image
processing libraries, identify diseases, and determine whether
organs are normal (Smistad et al., 2015; Widodo et al., 2020).
The results of this study show that the use of a median filtering
can remove noise and preserve the features of Manhattan plots. In
addition, the image features of the Manhattan plot can be
enhanced by adding the dilation process, which increases the
classification basis of the recognition system of the trained model.
Moreover, in this study, the correctness of the model was
generally the highest when the parameter steps_per_epoch was
set to 2 or 3. The setting of validation_steps = 4 can obtain a good
training model for image recognition and significantly reduce the
computation time of the training model.

One of the objectives of this study was to use a TWB data set
with a relatively of a small sample size, which after being
generated from SMOTE data, can have the same effect as the
UKB data set with a relatively larger sample size to identify
SNPs associated with genetic diseases. This study used TW-
SMOTE with a mixed ratio of a median filter (M) + dilation (D)
and model parameters set to steps_per_epoch = 2 and
validation_steps = 4 as the training model, and model
prediction using the UK-SAIGE Manhattan plot for dilation
(D). TW-SMOTEMD-MIX and UK-SAIGE were used for image
recognition, and it was found that the HPT and IBS prediction
models showed more than 90% correctness (TW-SMOTEHPT-

MD-MIX, similarity = 0.9719 and TW-SMOTEIBS-MD-MIX,
similarity = 0.6197, Supplementary Table S5).
Furthermore, TW-SMOTEAST-MD-MIX could not be correctly
recognized, which may be due to a racial difference in AST, and
resulted in different features in the TWB and UKB Manhattan
plots (Supplementary Table S5).

Another objective of this study was to generate TWB data
through SMOTE, which can show the same effect as other
statistical methods (i.e., SAIGE) when handling the data
imbalance problem. In this manner, SNPs associated with
genetic diseases may be uncovered. Finally, this study
determined the optimal data generation ratios (i.e., 0.005 for
HPT, 0.03 for IBS, and 0.001 for AST) for three diseases
(i.e., HPT, IBS, and AST) through TWB data imbalance.
According to the results of this study, the combination with
the best performance was the SMOTE proportional mixture
(i.e., TW-SMOTEHPT-MD-MIX, similarity = 0.9719 and TW-
SMOTEIBS-MD-MIX, similarity = 0.6197), which used median
filtering to remove noise and preserve the image features in
the Manhattan plot, and dilation to process the enhanced
image features. In addition, the correctness of the model was
generally the highest when the parameter steps_per_epoch was
set to 2 or 3, good models could be obtained when
validation_steps = 4 was applied, and the computing time of
the training model could be simultaneously and significantly
reduced.
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Our study uses the data processing method and deep learning
image recognition to deal with the problem of data imbalance. In
addition to the statistical method (i.e., SAIGE), our study can be
used as another option for researchers to deal with data
imbalances. SMOTE may generate too many similar data
because of insufficient human data, so it may violate the
assumption that the data must meet the independence
required in the GWAS analysis. Therefore, we chose diseases
with more cases in TWB, namely, AST, HPT, and IBS. In
addition, our study selected three diseases with different
case–control ratios as the exploration of SMOTE when
generating data.

One of the purposes of this study was to use a deep learning
image recognition system to identify and compare Manhattan
plots from TW-SMOTE and TW-SAIGE to prove the same effect
of SMOTE to SAIGE. The other purpose of this study was to
evaluate whether the processing of technical data can be
equivalent to the use of data plots with a relatively large UKB
sample size. Consequently, we used a deep learning image
recognition system to identify and compare TWB with
relatively few subjects and use SMOTE to generate data
(i.e., TW-SMOTE), which can achieve the same results as the
UKB (i.e., UK-SAIGE), with more subjects to explain genetic
diseases. However, some genetic disorders are more likely to
occur among people who trace their ancestry to a particular
geographic area (Wright Willis et al., 2010; Flanagin et al., 2021).
The principal component analysis (PCA) method is considered to
be a very useful method to adjust population stratification in
large-scale genetic data analysis (Price et al., 2006; Liu et al.,
2013). In our subsequent extended research, our genetic data can
be analyzed by PCA to adjust for genetic differences between
ethnic groups, and then the Manhattan plot can be drawn. This
step can adjust the population stratification for possible ethnic
differences in genetic analysis, and the results can help improve
the accuracy of deep learning image recognition system.

Our research used a data processing method in TWB data,
i.e., SMOTE (named TW-SMOTE), to deal with the problem of
imbalance like the traditional statistical method, i.e., SAIGE
(named TW-SAIGE). We constructed Manhattan plots from
the TW-SMOTE and TW-SAIGE data. Then, we used a deep
learning image recognition system to identify and compare the
Manhattan plots from TW-SMOTE and TW-SAIGE. Finally, we
used the image recognition results to determine our data
processing method and achieve the same effect as the
statistical method SAIGE to address data imbalance. This
study used the Manhattan plot as the basis for image
recognition and applied TWB to identify the optimal ratio of
data generation for three diseases (HPT, IBS, and AST). The

processing of technical data can be equivalent to the use of data
plots with a relatively large UKB sample size and achieve the same
effect as the statistical method SAIGE to address data imbalance.

5 SUMMARY

Our study used a deep learning image recognition system to
identify TW-SMOTE and found TW-SMOTE can achieve the
same results as that of SAIGE and UK Biobank (UKB). The
processing of the technical data can be equivalent to the use of
UKB data plots with a relatively large sample size and achieve the
same effect as the statistical method SAIGE to address data
imbalance.
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